Self-recovering stimuli-responsive macrocycle-equipped supramolecular ionogels with unusual mechanical properties.
نویسندگان
چکیده
A chiral, crown-ether-functionalized bisurea gelator forms supramolecular gels in ionic liquids. The resulting ionogels show a remarkably high thermal stability with gel-sol transition temperatures (T(gs)) reaching more than 100 °C. The mechanical strength of these ionogels is surprisingly high and even comparable to that of cross-linked protein fibres. Furthermore, the ionogels exhibit rapid self-recovery properties after structural damage caused by deformation. Pseudorotaxanes form from the gelators' benzo[21]crown-7 ethers as the wheels and secondary ammonium ions as the axles despite the competition between that cation and the imidazolium ions of the ionic liquid for crown ether binding. Pseudorotaxane formation as an external chemical stimulus triggers the gel-sol transition of the ionogels.
منابع مشابه
Engineering responsive supramolecular biomaterials: Toward smart therapeutics
Engineering materials using supramolecular principles enables generalizable and modular platforms that have tunable chemical, mechanical, and biological properties. Applying this bottom-up, molecular engineering-based approach to therapeutic design affords unmatched control of emergent properties and functionalities. In preparing responsive materials for biomedical applications, the dynamic cha...
متن کاملStimuli Responsive Ionogels for Sensing Applications—An Overview
This overview aims to summarize the existing potential of "Ionogels" as a platform to develop stimuli responsive materials. Ionogels are a class of materials that contain an Ionic Liquid (IL) confined within a polymer matrix. Recently defined as "a solid interconnected network spreading throughout a liquid phase", the ionogel therefore combines the properties of both its solid and liquid compon...
متن کاملIonic supramolecular bonds preserve mechanical properties and enable synergetic performance at high humidity in water-borne, self-assembled nacre-mimetics.
Although tremendous effort has been focused on enhancing the mechanical properties of nacre-mimetic materials, conservation of high stiffness and strength against hydration-induced decay of mechanical properties at high humidity remains a fundamental challenge in such water-borne high-performance materials. Herein, we demonstrate that ionic supramolecular bonds, introduced by infiltration of di...
متن کاملBiomimetic Stress Sensitive Hydrogel Controlled by DNA Nanoswitches
One of the most intriguing and important aspects of biological supramolecular materials is its ability to adapt macroscopic properties in response to environmental cues for controlling cellular processes. Recently, bulk matrix stiffness, in particular, stress sensitivity, has been established as a key mechanical cue in cellular function and development. However, stress-stiffening capacity and t...
متن کاملSupramolecular gel from folic acid with multiple responsiveness, rapid self-recovery and orthogonal self-assemblies.
Through a good/poor solvent strategy, native folic acid (FA) which behaves as a super-gelator in DMSO-water system can be successfully employed to construct supramolecular gels. The system exhibited morphological evolution with the increase of FA concentration; various phases such as vesicles, fiber/vesicles, fiber/nanoparticles, nanoparticles were probed. In the self-assembly process, l-glutam...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Organic & biomolecular chemistry
دوره 12 3 شماره
صفحات -
تاریخ انتشار 2014